Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38659791

RESUMO

Identifying associations between phenotype and genotype is the fundamental basis of genetic analyses. Inspired by frequentist probability and the work of R.A. Fisher, genome-wide association studies (GWAS) extract information using averages and variances from genotype-phenotype datasets. Averages and variances are legitimated upon creating distribution density functions obtained through the grouping of data into categories. However, as data from within a given category cannot be differentiated, the investigative power of such methodologies is limited. Genomic Informational Field Theory (GIFT) is a method specifically designed to circumvent this issue. The way GIFT proceeds is opposite to that of GWAS. Whilst GWAS determines the extent to which genes are involved in phenotype formation (bottom-up approach), GIFT determines the degree to which the phenotype can select microstates (genes) for its subsistence (top-down approach). Doing so requires dealing with new genetic concepts, a.k.a. genetic paths, upon which significance levels for genotype-phenotype associations can be determined. By using different datasets obtained in ovis aries related to bone growth (Dataset-1) and to a series of linked metabolic and epigenetic pathways (Dataset-2), we demonstrate that removing the informational barrier linked to categories enhances the investigative and discriminative powers of GIFT, namely that GIFT extracts more information than GWAS. We conclude by suggesting that GIFT is an adequate tool to study how phenotypic plasticity and genetic assimilation are linked.

2.
Artigo em Inglês | MEDLINE | ID: mdl-31821966

RESUMO

A method for the simultaneous quantification of B vitamins and related amines in one-carbon (1C) metabolism would benefit the study of diet and genetic/epigenetic regulation of mammalian development and health. We present a validated method for the simultaneous quantitative analysis of 13 B vitamers and four related 1C-pathway amine intermediates in liver using hydrophilic interaction chromatography (HILIC) coupled to electrospray ionization tandem mass spectrometry. Frozen sheep liver samples (50 mg) were homogenized in cold 50% acetonitrile containing 1% acetic acid with the addition of two isotope labelled internal standards. Hot acid hydrolysis was applied to release the protein-bound forms. The separation of 17 analytes was achieved using a pHILIC column with a total run time of 13 min. Detection was achieved in electrospray positive ionisation mode. Limits of detection for the majority of analytes were within the range of 0.4-3.2 pmol/g. The method was applied to 266 sheep liver samples and revealed that adenosylcobalamin, methylcobalamin, pyridoxic acid, flavin adenine dinucleotide and thiamine were the major forms of the B vitamers present with pyridoxal 5'-phosphate and thiamine pyrophosphate being detected at lower concentrations. Trimethylglycine and methylglycine were the predominant 1C-related amines measured. As anticipated, the B vitamin status of individuals varied considerably, reflecting dietary and genetic variation in our chosen outbred model species. This method offers a simple sample extraction procedure and provides comprehensive coverage of B vitamins coupled with good sensitivity and reliability.


Assuntos
Fígado/química , Riboflavina/análise , Vitamina B 12/análise , Vitamina B 6/análise , Animais , Cromatografia Líquida/métodos , Cobalto/análise , Feminino , Interações Hidrofóbicas e Hidrofílicas , Limite de Detecção , Modelos Lineares , Masculino , Reprodutibilidade dos Testes , Ovinos , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos
3.
Annu Rev Anim Biosci ; 7: 263-287, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30412672

RESUMO

One-carbon (1C) metabolism comprises a series of interlinking metabolic pathways that include the methionine and folate cycles that are central to cellular function, providing 1C units (methyl groups) for the synthesis of DNA, polyamines, amino acids, creatine, and phospholipids. S-adenosylmethionine is a potent aminopropyl and methyl donor within these cycles and serves as the principal substrate for methylation of DNA, associated proteins, and RNA. We propose that 1C metabolism functions as a key biochemical conduit between parental environment and epigenetic regulation of early development and that interindividual and ethnic variability in epigenetic-gene regulation arises because of genetic variants within 1C genes, associated epigenetic regulators, and differentially methylated target DNA sequences. We present evidence to support these propositions, drawing upon studies undertaken in humans and animals. We conclude that future studies should assess the epigenetic effects of cumulative (multigenerational) dietary imbalances contemporaneously in both parents, as this better represents the human experience.


Assuntos
Desenvolvimento Embrionário/fisiologia , Epigênese Genética/fisiologia , Redes e Vias Metabólicas , Animais , Metilação de DNA , Dieta , Ácido Fólico/metabolismo , Variação Genética , Humanos , Masculino , Metionina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...